
Sedimentology and hydrocarbon habitat of the submarine-fan deposits of
the Central Carpathian Paleogene Basin (NE Slovakia)

J. Sotaka,*, M. Pereszlenyib, R. Marschalkoc, J. Milickad, D. Stareke

aGeological Institute, Slovak Academy of Sciences, Severna 5, 974 01 Banska Bystrica, Slovak Republic
bVVNP Ð Research Oil Company for Exploration and Production, Votrubova 11a, 825 05 Bratislava, Slovak Republic

cGeological Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 842 26 Bratislava, Slovak Republic
dDepartment of Geochemistry, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic

eGeological Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 842 26 Bratislava, Slovak Republic

Received 28 August 1997; received in revised form 13 March 2000; accepted 19 May 2000

Abstract

The Central Carpathian Paleogene Basin accommodates a subsiding area of the destructive plate-margin. The basin history comprises

marginal faulting and alluvial fan accumulation (E2); transgressive onlap by shoreface sediments and carbonate platform deposits (E2);

glacio-eustatic regression induced by cooling (Terminal Eocene Event); forced regression, tectonic subsidence and growth-fault accumula-

tion of basin-¯oor and slope fans (E3); decelerating subsidence, aggradation and sea-level rising during the mud-rich deposition (O1); high-

magnitude drop in sea-level (Mid-Oligocene Event), retroarc backstep of depocenters and lowstand accumulation of sand-rich fans and

suprafans (O2±M1); subduction-related shortening and basin inversion along the northern margins affected by backthrusting and trans-

pressional deformation (O2±M1). The basin-®ll sequence has poor (TOC # 0.5%) to fair (TOC , 1.0%) quality of source rocks. Maturity of

OM ranges from initial to relic stage of HC generation. Paleogene rock-extracts display a good correlation with scarce trapped oils. The

presence of solid bitumens and HC-rich ¯uid inclusions indicates overpressure conditions during HC generation and migration. Potential HC

reservoirs can be expected in porous lithologies (scarp breccias), in basement highs and traps related to backthrusting, fault-propagation

folding and strike±slip tectonics. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Central Carpathian Paleogene Basin (CCPB) lies

within the West Carpathian Mountain chain. The CCPB

extends over an approximate area of 9000 km2 having a

sedimentary bulk of about 11 500 km3. The basin is ®lled

by several hundred up to thousand meters thick of ¯ysch-

like deposits. The CCPB experienced the Late±Middle

Eocene transgression from the Peritethyan sea of the

Outer Carpathian basins (Andrusov & KoÈhler, 1963). The

basin lasted under submarine fan deposition till the Latest

Oligocene±Early Miocene? (Sotak, Bebej, & Biron, 1996;

Sotak, Spisiak et al., 1996).

Paleogene sediments of the CCPB have been investigated

in numerous studies on sedimentology (e.g. Marschalko,

1966, 1970, 1975, 1981, 1987; Marschalko & Gross,

1970; Marschalko & Radomski, 1960; Picha, 1964;

Radomski, 1958), regional geology (e.g. Gross et al.,

1999, 1980, 1993; Nemcok, 1990), biostratigraphy (e.g.

Blaicher, 1973; Dudziak, 1986; Gedl, 1995; KoÈhler, 1967;

Marschalko & Samuel, 1960; Molnar, Karoli, & Zlinska,

1992; Olszewska & Wieczorek, 1998; Samuel & Bystricka,

1968; Samuel & Salaj, 1968; Samuel & Snopkova, 1962),

basin analysis and paleogeography (e.g. Marschalko, 1981;

Nemcok, Keith, & Neese, 1996; Samuel, 1973), structural

geology (e.g. Mastella, Ozimkowski, & Szcesny, 1988;

Nemcok, 1993; Ratschbacher et al., 1993; Sperner, 1996),

geophysical research (e.g. Fusan, Biely, Ibrmajer,

Plancar, & Rozloznik, 1987; Morkovsky, 1981), and

organic geochemistry (Francu & MuÈller, 1983; Korab

et al., 1986; Masaryk, Milicka, Pereszlenyi, & Pagac,

1995). Hydrocarbon potential of the CCPB was tested

by deep drillings in Lipany and Plavnica prospects,
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including Lipany 1±6, Plavnica 1, 2, Sambron PU1 and

Saris 1 wells. Indications of borehole hydrocarbon were

recovered as methane, paraf®nic oils, non-combustible gas,

asphalts and nitrogen (e.g. Nemcok et al., 1977; Rudinec,

1989, 1992). Both oil and gas were trapped mostly in the

breccia-type reservoirs.

In this paper we aim to present a new sedimentary

model of the CCPB based on a facial analysis,

sequence stratigraphy, subsidence history and hydro-

carbon potential appraisal. In the attempt to derive a

new model we, as the ®rst step, introduce pre-existing

and new data sets. These data sets comprise sedimen-

tary, geochemical, structural and engineering geology

data, frequently available in unpublished reports (e.g.

Keith et al., 1991; Pereszlenyi, Milicka, & Vitalos,

1996; Sotak, Spisiak et al., 1996). As a second step,

all databases are compared in order to derive critical

parameters for a new model.

2. Geological setting

The CCPB represents the largest accumulation space of

the submarine fan deposits in the Central Western

Carpathians (Fig. 1). The CCPB was formed on the upper

plate above the subducting oceanic slab attached to the

European Platform (e.g. Royden & Baldi, 1988). The

basin overlaps the basement units consolidated by pre-

Senonian thrusting. The Paleogene sediments are preserved

in several structural sub-basins, including the Zilina, Rajec,

Turiec, Orava, Liptov, Podhale, Poprad and Hornad

Depressions. The sedimentary cover of the CCPB surrounds

crystalline basement massifs, like the Vysoke Tatry,

Branisko and Mala Fatra Mts., which were uplifted during

22±10 Ma (Kovac, Kral, Marton, Plasienka, & Uher, 1994;

Kral, 1977). The CCPB is bounded to the north by the

Pieniny Klippen Belt, which represents a transpressional

strike±slip zone related to plate boundary (Csontos, 1995;
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Fig. 1. Location of study area within the Alpine-Carpathian orogen (A); the CCP Basin system depicting structural sub-basins, basement massifs and

surrounding units (B); geological sketch of the eastern Slovakia with situated wells studied (C).



Csontos, Nagymarosy, Horvath, & Kovac, 1992; Potfaj,

1998; Ratschbacher et al., 1993).

The sediments of the CCPB are commonly divided into

lithostratigraphic formations of Subtatric Group (Gross,

KoÈhler, & Samuel, 1984). From the base, the sedimentary

sequence is developed as follows (Fig. 3A): Borove

Formation (including Tomasovce Mr., Hornad Mr.,

Vitkovce Breccias sensu Filo & Siranova, 1996, 1998) Ð

basal transgressive facies consisting of breccias, con-

glomerates, polymictic sandstones to siltstones, marlstones,

organodetrital and organogenic limestones; Huty Formation

(including Sambron Beds sensu Chmelik, 1957) Ð

claystone/siltstone lithofacies less frequently with interbeds

of ®ne- to medium-grained sandstones and ªMeniliteº-type

shales; Zuberec Formation (including Kezmarok Mr. sensu

Gross, 1998) Ð sandier, medium-rhythmical ¯ysch

sediments; Biely Potok Formation Ð massive sandstone

banks. Each of the CCPB formations contains coarse clastic

fans named the Pucov Member. Their thickness is highly

variable depending on bottom con®guration and differential

subsidence. The stratigraphical range of the CCPB forma-

tions has been limited to Bartonian±Lower Oligocene (e.g.

Gross et al., 1993; Samuel & Fusan, 1992). However,

their nannoplankton stratigraphy has to be extended to

the Latest Oligocene or even to the Early Miocene?

(Olszewska & Wieczorek, 1998; Sotak, 1998a,b; Sotak,

Spisiak et al., 1996).

The CCPB shows an asymmetic pro®le inclined toward the

north (Fig. 2). Therefore, the Upper Eocene±Lower Oligocene

formations of the CCPB get thicker toward the marginal

(Periklippen) depression, and the Upper Oligocene formations

toward the hinterland (e.g. Levocske vrchy Mts.). The greatest

thickness of the ¯ysch sediments occurs in the Sambron Zone,

which is an antiformal structure that brings Upper Eocene

formations of the CCPB to the surface (Sambron Beds Ð

shaly and thin- to medium-rhythmic ¯ysch deposits with intra-

formational bodies of conglomerates and breccias). The

Sambron Zone is a belt of tectonically disturbed ¯ysch sedi-

ments in the northern ¯ank of the CCPB about 5 km wide, near

the junction with the Pieniny Klippen Belt.

The structural pattern of the CCPB includes basement-

involved fault zones, like the Margecany and Muran Faults,

extensional structures, like halfgrabens and listric and

antithetic faults in the Hornad, Periklippen and Poprad

Depressions, and structures related to retro-wedge thrusting,

transform faulting and strike±slip tectonics in the Sambron

Zone (Kovac & Hok, 1996; Marko, 1996; Nemcok, 1993;

Nemcok et al., 1996; Nemcok & Nemcok, 1994; Plasienka,

Sotak, & Prokesova, 1998; Ratschbacher et al., 1993;

Sperner, 1996).
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3. Facial analysis and sedimentology

Sedimentary formations of the CCPB are classi®ed with

respect to dominant lithologies. In fact, the formations

represent sediments from different submarine fan environ-

ments, because their lithology appears as identical.

Therefore, the claystone lithology of the Huty Fm.

corresponds to various mud-rich deposits, such as basinal

mudstones, overspilled muds and levees, slope mudstone

drapes, bypassing muds and muddy hypopycnal deposits.

However, there are also cases when different lithologies

have been de®ned as the same lithostratigraphic unit. For

instance, the Biely Potok Fm. de®nes mostly massive

sandstones from the middle-fan area (suprafan lobe and

channel-and-®ll deposits after Janocko, Hamrsmid,

Siranova, & Jacko, 1998; Sotak, 1998a; Sotak, Bebej, &

Biron, 1996), but also conglomerates from the slope-fan

area (e.g. Saris Upland). In this sense, CCPB formations

should be interpreted as facies tracts of submarine fans

(Figs. 3B, 4 and 5).

The lowermost formation of the CCPB contains sediments

of alluvial fans, de®ned as the Hornad Member (Filo &

Siranova, 1998). They consist of conglomerates (Fig. 6a),

poorly sorted sandstones and boulder breccias, which are

indicative of rockfall avalanches, stream ¯ows, ¯uidal

surge ¯ows, debris ¯ows, traction currents and high-density

turbidite currents (Barath & Kovac, 1995; Marschalko,

1970). Floodplain sediments of fan deltas of the lowermost

formation are represented by parallel-strati®ed and cross-

strati®ed sandstones with dispersed gravel patches or

landslide failure breccias, de®ned as the Chrast Member

with Vitkovce Breccias (Filo & Siranova, 1998). The

accumulation of alluvial fan deposits was controlled by

marginal faulting like halfgraben or ancient river valley

(Marschalko, 1970).

The alluvial fans are overlain by sediments of marine

transgression. They are developed mostly as shoreface sand-

stones (Fig. 6b and c), offshore bars, longshore nummulitic

banks and fore- and back-bank facies (Bartholdy, 1997;

Bartholdy, Bellas, Cosovic, Fucek, & Keupp, 1999;

Kulka, 1985). In the Levoca Mts., the Nummulite Eocene

transgression overlapped the seaward depression within the

Sambron Zone, which was followed by backstepping of

shoreline on the land during the Early Oligocene. The
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nummulitic strata are covered by hemipelagic drapes of the

Globigerina Marls or directly overlain by dark claystones

and wispy-laminated muds, known as mud blankets beneath

the Sambron Beds. The Sambron Beds consist of submarine

fan sediments extended in the Podhale-Spis Magura area

(Sza¯ary Fm.), and piled up in the thrust structure of the

Sambron Zone. They show a marginality to laterally enter-

ing canyons, which served as multiple point-source feeders

for the Sambron, Tokaren, Pucov and Sza¯ary Fans. These

canyons and related fans indicate their shelf-margin connec-

tion to a delta (units 1±2 sensu Janocko & Jacko, 1998).

Sedimentary formations of the Sambron Beds are formed by

black shales and thin- to medium-bedded sandstones (Fig.

6d), which are indicative of debris ¯ow deposition through

freezing in laminar state or transformation to turbulent

¯ows, muddy hypopycnal plumes and delta-toe turbidites,

known as amalgamated megabeds in the Spis Magura area

(shingled turbidites sensu Mitchum, Sangree, Vail, &

Wornardt, 1993). Claystone/sandstone sediments of the

Sambron Beds are intercalated with conglomerates and

talus breccias (Fig. 6e), which are up to 500 m in the

Sambron PU-1 well (Fig. 13). They form either sharply

based intraformational bodies deposited via cohesive slide-

¯ows or chaotic accumulations driven by en masse move-

ment, like pebbly mudstones or slurry slumps.

Accumulation of large blocks within the Sambron Beds,

like in the Spis Magura Mts. and Ginoc creek near Sabinov,

indicates the submarine landsliding. The Sambron Beds

contain practically no trace fossils. Sedimentary successions

of the Sambron Beds reach a thickness of up to 3000 m.

The Upper Eocene Sambron Beds are overlain by

claystone lithofacies, which indicate enormous amounts of

mud entrained into the CCPB and low ef®ciency of feeder

channel systems. The formation is developed in alteration of

thin sheet-like or pinching out sandstone beds, which are

coupled with thick mudstone caps and hemipelagic drapes.

Internal strati®cation of turbidite beds reveals ¯ow-stripping

processes in the upper ¯ow regime. They form mostly base-

missing, distinctly laminated and convoluted layers, de®ned

as Bouma's Tbcd divisions. Sandstone beds frequently show

a dominance of dune phase, observed in the cross-strati®ed

bedforms with downcurrent migration of ripples (Fig. 6f). A
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case of antidunes with upcurrent migration of ripples with

respect to basal ¯utes has also been recorded (e.g. Revistne,

Roskovany). Hydroplastic deformations, like cylindrical or

isoclinal folds in convolute lamination, are common owing

to a high volume of suspended load. Complete Ta±e

turbidites are reduced in bed thickness, which is about

0.5 m. The claystone formation occasionally, like in the

Bysterec section in Orava, contains 3±4-m-thick composite

beds of megaturbidites with multiple Tb intervals of

tractional lamination (Fig. 6g). Their internal structures,

like inversely graded laminae (S2 ¯ow type sensu Lowe,

1982), indicate the traction-carpet deposition within the

small-scale submarine channel. Interturbidite deposits of

claystone formation comprise mostly homogenous

mudstones deposited from muddy fallout. Claystones are

associated with manganese beds, like in the Svabovce-

Kisovce prospect, pelocarbonates and occasionally also

with tuf®te intercalations. They are richer in traces of

ichnofossils and bioturbation, observed in mottled

mudstones. Claystone formation represents a simple deposi-

tional system of mud-rich fans with open-fan facies, basinal

mudstones, small-scale lobes, large leveed channels, starved

ripples, Zebra-type facies, washload spills and slumped

overbank deposits. The formation is considered to be the

Lower Oligocene sub¯ysch, which precedes the main ¯ux

of turbidite systems into the CCPB.
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Fig. 5. Representative logs of sedimentary facies in the CCPB (Orava Basin) showing the distribution of submarine fan facies, known as channelized

conglomerates with mud overspills (1), mudstone-dominant deposits with megaturbidites (2), open-fan deposits (3), channel-®ll deposits (4), mud-rich

levee deposit (5), lobe deposits (7) and suprafan deposits (6). Abbreviations: E3 Ð Upper Eocene, O1 Ð Lower Oligocene, O2±M1 Ð Upper Oligocene

up to Early Miocene.



During the Late Oligocene the CCPB was ®lled up

by sand-rich fans. They form large elongated fans with

counter-directional paleocurrent orientation proceeding

from E and SE to W and NW (Levoca Mts., Saris Upland,

Hornad and Poprad Depressions) and from W and SW to E

and NE (Orava, Podhale and Spis Magura Mts.). Both

paleocurrent systems exhibit a downfan distribution of

submarine fan facies (Fig. 7). In accordance with paleocurrent

direction the bed-thickness logs decrease and vertical

arrangement of ¯ysch sequences changes from the thin-

ning-upward trend in the upper fan zone to mostly a thick-

ening-upward trend in the zone of depositional lobes and to

a non-cyclic trend in the distal facies. The slope facies of

the submarine fans occurs as markedly channelized and
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Fig. 6. (a) Coarse-grained conglomerates of alluvial-fans in lowermost formation of the CCPB (Hornad Mr.). (b) Massive sandstones of transgressive

formation (Tomasovce Mr.) exhibiting a large-scale tabular cross-strati®cation with pebble lags. (c) Cross-strati®ed sandstone with small-scale sets of

inclined ripples and erosional lower bounding surface. Transgressive shoreface deposits of the CCPB. (d) The Sambron Beds formed by shaly and ®ne

turbiditic deposits. The sequence is intercalated by conglomerates and scarp breccias. (e) Carbonate breccia with green-coloured matrix from the Sambron

Beds. Note the symmetrical pressure shadows of slicken®bre chlorite/smectite aggregates, developed as white rims around the clasts. (f) Turbiditic beds in

mudstone-dominant formation (Huty Fm.). Sandstone shows a well-developed duna phase of cross-strati®cation, formed by downcurrent migration of ripples.

(g) Megaturbidite in mudstone-dominant formation (Huty Fm.), observed as a composite sandstone bed with multiple Tb intervals of tractional lamination.

Scale bar is about 1 m. (h) Well-developed channel in submarine fans of the CCPB (Levoca Basin). Channel forms deep scours ®lled up by coarse-grained

sandstones with rafted claystone chips in the top of amalgamated beds (high-density turbidites). It incised the previous sequence of silty mudstones with

pinching-out ripples (levee-overbank deposits). Erosional structures in scours indicate mass vasting ®ll of channels (giant groove casts). (i) Slump-folded

deposits of submarine-fan channels in the CCPB. The channel was ®lled up by slumps, pebbly mudstones and distorted sandstone beds and then over¯ow and

abandoned, as indicated by thinning-upward development of sandstone-®ll sequence. Scale bar is about 0.5 m. (j) Lobe deposits of submarine fans showing the

tabularity of sandstone beds and progradational development of thickening-upward sequence. (k) Fan-fringe deposits of submarine fans (Kezmarok Mr.) with

less conspicuous progradational development of lobe sequences. (l) Abundant ichnocoenosis with Fucoides graphicus (like Taphrhelmintopsis-rich ichno-

coenosis) in the Oligocene sediments occurring in responce to bottom oxygenation and renewed circulation of the CCPB. (m) Levee facies of submarine fans,

observed as markedly laminated and rippled deposits. They are intimately intermixed with lobe, channel and interchannel deposits. The current-laminated

structures resulted from overbanking processes related to submarine fan lobes and channels. (n) Levee deposits with lenticular bedding and cross-ripple

strati®cation (like ¯asser-type bedding). (o) Slump-folded sediments of levee crest deposits indicating its steeper slopes toward the interchannel areas. (p) Rip-

up clasts derived from levee mudstones and incorporated into the basal portion of overlying channel-®ll deposits. (r) Sandstone-dominant sequence of suprafan

deposit in the CCPB (Biely Potok Fm.). They are observed as unchannelized massive sandstones showing a great lateral extent in bed thickness and tabularity

(suprafan lobes). (s) Massive sandstone of suprafan lithosomes, observed as markedly graded bed with parallel strati®cation of pebbly ªtracersº and laminar

¯ow structures in the top. Their internal strati®cation indicates the deposition from sandy debris ¯ows (planar fabric, ¯oating granules, preservation of fragile

rafted clasts, etc.).



slump-folded deposits (Fig. 6h and i), known in the Saris

Upland, but unknown in the Orava region (ªwild ¯yschº

after Marschalko, 1966). Channels are ®lled by conglomeratic

and chaotic accumulations nivellated by thinning-upward

sandstone beds. Interchannel facies are developed as levee

overbanks, comprising thin- to medium-bedded turbidites,

unchannelized sandstones of crevasse-splays, or spilled-out

muds.

Further down, for example in the Levoca or Skorusina

Mts., the slope facies of submarine fans pass into the zone of

depositional lobes. Lobe deposits show a great tabularity of

beds, which are vertically stacked with a thickening-upward

tendency (Fig. 6j). They start as thin-bedded turbidites,

which become thicker upward and progressively pass into

massive and homogenous turbidites. The thickness of

individual lobe cycles ranges from 5 to 30 m. Lobe cycles

either follow each other successively or are intercalated by

lobe-and-levee and channel-and-levee deposits. Levee crest

facies indicate deposition from dilute suspensions and ®ne

turbidites spilled out from distributary lobe channels. They

are commonly mudstone-rich and remarkably laminated,

rippled and slumped (Fig. 6m and o). Levee deposits exhibit

various wave-current structures such as ¯at, climbing-ripple

and starved-ripple lamination, lenticular bedding, cross-

ripple strati®cation, load-casted ripple marks, convolute

lamination and ¯aser-type bedding (see Mutti, 1977).

Lobe successions with occasional channel-and-levee

deposits grade upward into sand-rich lithosomes. These

lithosomes are tabular bodies of massive amalgamated

sandstones that lack interbedded shales (Fig. 6r). Sandstones

are commonly developed as normal or inverse graded beds

with lamination in the top portion. Their sedimentary

structures are indicative of high-density turbidity currents

or sandy debris ¯ows (sensu Shanmugam, 1996). Sandstone

lithosomes are characterized by sharp contacts, typical for

the freezing of high-density currents, by buoyancy of

coarser grains, known as pebbly ªtracersº (Fig. 6s), by

rafted clasts in the form of claystone chips (Fig. 6p) and
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by transition to laminar intervals, de®ned as tractional

lamination. Sandstone lithosomes of the Levoca and

Skorusina Mts. represent the ®nal stage of the submarine

fan deposition, de®ned as the ªsuprafanº (sensu Normark,

1970). Their tabularity recalls the suprafan lobes that

aggrade to form a suprafan bulge. The suprafan area of

the Levoca Mts. is eroded by braided distributory channels

®lled up by pebble-sandstone and conglomerate accumula-

tions. Lobe-fringe facies of the suprafan show less

conspicuous progradational trends (Fig. 6k). They are

developed either as medium-rhythmic bedded formations

in Spis Depression (Kezmarok Member sensu Gross,

1998) or as Zebra-type turbidites containing a high amount

of the ophiolite detritus and some tuf®tes in the Sambron

Zone (Sotak & Bebej, 1996).

4. Sequence stratigraphy

The CCPB has undergone two third-order cycles of initial

transgression (TA 3.5±3.6 sensu Exxon cycles), which were

followed by two second-order cycles of deposition (TA4

and TB1 sensu Exxon cycles). The initial transgression

was preceded by deposition of alluvial-fan and delta-fan

sediments. Alluvial suites show upward change from

subaerial to subaqueous deposits (Barath & Kovac, 1995).

The evidence of the ®rst marine incursions is present in the

uppermost strata of these suites, including the appearance of

oysters, gastropods and bivalves (Volfova, 1962). Later on,

¯uviodeltaic sediments of the CCPB were ¯ooded to the

coastal zone and then overlain by shoreface sands, as

indicated by the Tomasovce Member (Filo & Siranova,

1996), and carbonate platform deposits. The Upper Lutetian

transgression in the CCPB (Andrusov & KoÈhler, 1963) led

to the shallow-marine deposition of nummulitic banks,

developed in two third-order cycles (Bartholdy, 1997).

Nummulitic cycles of the CCPB, like a large foraminifera

demise (Hallock, Premoli-Silva, & Boersma, 1991;

Hottinger, 1997), disappeared because of the inversion of

the Middle Eocene warm climate to cooler climate in the

beginning of the TA4 supercycle. Climatic changes

culminated in the ªTerminal Eocene Eventº (Figs. 8 and

10), which corresponds to the global cooling and glacio-

eustatic regression related to the Antartic cryosphere

expansion (Robert & Kennett, 1997; Van Couvering et al.,

1981). Consequently, the extensive carbonate deposition on

broad warm shallow shelves was suffocated by terrigenous

sedimentation on bypassed shelf areas, in accordance with

observation of the latest nummulites in the CCPB that

survived until the Zone P16 (KoÈhler, 1998). The sediments

from above the nummulitic limestones are depleted in

CaCO3 and enriched in organic matter owing to continental
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runoff of land plants. They contain abundant cool-water

cocoliths, like Isthmolithus recurvus, Zigrablithus bijugatus,

diatom oozes in Menilite facies, Globigerina-rich fauna in

the Globigerina Marls and nectonic ®shes (Amphisile

Shales sensu Suess, 1866). A small-scale intercalation

of non-calcareous black shales and Menilite facies with

Globigerina Marls indicates short pulses of the high

carbonate productivity during the terminal Eocene fertility

crisis (Pomerol & Premoli-Silva, 1986). The ¯uctuations in

productivity provide the evidence of climatic changes

driven by precessional cyclicity (Krhovsky, 1995;

Krhovsky, Adamova, Hladikova, & Maslowska, 1993;

Leszczynski, 1997).

The climatic control of depositional changes in the CCPB

became less signi®cant during the period of forced

regression (Figs. 9±11). Nevertheless, the cool-water in¯ux

into the CCPB led to the carbonate depletion and anoxicity

in the Sambron Beds, as indicated by non- or weakly

calcareous claystones, anoxic facies, scarcity of micro-

fossils and sulphide-rich black shales. The appearance of

the Globigerina Marl in deep-water siliciclastic deposits of

the Sambron Beds indicates the CCD drop that occurred

near the Eocene/Oligocene boundary (Thunell & Corliss,

1986). The falling stage of relative sea-level is recorded

by a Type-1 sequence boundary on shelves (between carbo-

nate platform deposits and overlying formation), which
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were eroded by ¯uvial channels entering the basin through

marginal delta-fed fans (Janocko & Jacko, 1998). Therefore,

the eroded nummulitic limestones and Globigerina Marls

are common in the slope fan conglomerates of the Sambron

Beds. During the forced regression, the basin slopes were

actively tilted and incised by submarine canyons, which fed

the basin-¯oor and slope fans. The Sambron Fan, like the

Tokaren, Pucov and Sza¯ary Fans, represents lowstand

system tracts consisting of channel-®ll, spillover and

mass-failure deposits (Gross, KoÈhler, & Borza, 1982;

Janocko & Jacko, 1998; Sotak, 1998a; Sotak, Bebej, &

Biron, 1996; Wieczorek, 1989). Successive stages of the

normal regression in the Sambron Beds are indicated by

progradational stacking of lobe sequences. The latest stage

of the relative sea-level lowering is marked by an amalga-

mated sandstone unit, observed, for example, in the Bachle-

dov Valley. This unit corresponds to shingled turbidites that

represent sandy toeset deposits of shelf-margin deltas. The

lowstand deposition of the Sambron Beds took place from

39±36 Ma, giving a high accumulation rate of ¯ysch

lithologies.

The TA4 supercycle tended toward the gradual rise of

relative sea level during the Early Oligocene (Figs. 8±11).

Successive formation of the CCPB during the deposition of

the Huty Fm. corresponds to transgressive and highstand

system tracts. The transgression is marked by ravinement

surfaces detectable as the unconformity between Eocene

Nummulitic banks and middle Rupelian sediments of the

NP 23 Biozone in the southern Orava region. Ravinement

surfaces provided a large amount of detrital components,

like nummulites, for turbidite clastics of transgressive

deposits. The sequence boundary at the base of the trans-

gressive formation is locally developed as an unconformity

between the growth fault systems tract of the Sambron Beds

and the overlying sequence of mud-rich fans (tectonically

enchanced sequence boundary sensu Vail, Audemard,

Bowman, Eisner, & Perez-Cruz, 1991). Basal sediments

of the transgressive formation still show the cool-water
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in¯uence, salinity decrease and semi-isolation, as indicated

by wetzeliellacean dino¯agellates, inprints of diatoms,

brackish nectonic ®sh and ostracods (South Orava region).

Higher in the section, the carbonate-free sequence reveals

the ®rst pulses of nannofossil blooms, characterized by

reticulofenestrids of NP 23 Biozone, which ¯ourished

because of sea-level rising and renewed circulation.

Evidences come from Tylawa-like limestones in the

Zuberec Formation (Gross et al., 1993). The Lower

Oligocene transgression rose to the highest sea-level at

32 Ma (Haq, Hardenbol, & Vail, 1988), which restored

the Paratethyan circulation (Baldi, 1984). Consequently,

the CCPB became reoxygenated, which led to the increase

in carbonate precipitation, productivity and fertility. Higher

nutrient and paleo-oxygen content in the basin is inferred

from bottom colonization by trace-fossil pioneers, like

Zoophycos beds in the Jakubovany section. The maximum

¯ooding of this sequence falls into horizons of manganese

layers, which occur in the Orava region and Rajec and

Poprad Depressions (Andrusov, Bystricka, & KoÈhler,

1962; Marschalko, 1959; Picha, 1961). Manganese layers

represent a condensed section of the marine transgression.

Their condensation is also expressed by a relative abundance

of biota, like cyclicargoliths and bathypelagic ®sh fauna,

glauconite-rich arenites, as against lowstand turbiditic sand-

stones of the Sambron Beds and Upper Oligocene sedi-

ments, pelocarbonates and sporadically also tuffaceous

intercalations (Prosiek Valley, Bajerovce and Plavnica).

Successive formation of mud-rich deposits indicates a

low-energy environment of highstand phase. The late

highstand of this formation is recorded by small-scale

progradational events and megaturbidite beds in the
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Fig. 7. Paleogeographic sketch of submarine fan systems in the CCPB during the Late Oligocene, as is shown by paleocurrent directions, distribution of facial

zones and downfan evolution of facies tracts. Note two systems of submarine fans with counter-directional paleocurrent orientation. Paleocurrent data for the

Podhale basin taken from Marschalko and Radomski (1960) and Radomski (1958).



Orava region. Such deposition with progradational events

(falling stage system tracts) terminated till the FAD of

Cyclicargolithus abisectus on the base of NP 24 biozone,

where the oxygen-related ichnocoenosis (Fig. 6l) with

Fucoides and Taphrhelmintopsis began to appear already

in ¯ysch lithologies (Taphrhelmintopsis unit sensu

Pienkowski & Westwalewicz-Mogilska, 1986). The Early

Oligocene highstand sedimentation in the CCPB is in

accordance with relative sea-level rise in the Outer

Carpathian Basin. Supra-Menilite sediments and associated

nanno-chalk horizons in the Outer Flysch Carpathians, like

the Jaslo, Zagorz and Folusz Limestones and the Stiborice

Marl, were deposited during the coeval sea-level highstand

in the Late Rupelian (Krhovsky, 1995; Krhovsky &

Djurasinovic, 1993). The composite sequence deposition

of the Huty Fm. lasted for about 5 Ma (35±30 Ma). It

indicates a slow accumulation rate of about 80±160 m/Ma

for mudstone dominant litologies.

The TB1 supercycle was introduced by the Intra-Oligocene

regression (Figs. 8±11). It is in accordance with an abrupt

sea-level fall at around 30 Ma (Mid-Oligocene Event),

determined as a distinctive drop in sea-level during the

major glaciation in Antartica and subsequent cooling in

the Northern Hemisphere (Kennett & Barker, 1990; Poag

and Ward, 1987; Robin, 1988; Zachos, Lohmann, Walker,

& Wise, 1993). At this time, the CCPB started to ®ll up by

sand-rich turbidite systems of submarine fans, as a

frequency of related turbidite currents essentially increased

during glaciation (Eberli, 1991; Shanmugam & Moiola,

1982). Therefore, the deposition of the Upper Oligocene

submarine fans in the CCPB appears to be forced by global

eustasy. The falling stage of the Late Oligocene regression

in the CCPB is expressed by of¯ap break of pre-existing

highstand sediments, which were eroded and reworked

into conglomerate-slope accumulations of submarine fans

(Fig. 9). The example cases are blocks of Mn carbonatic
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Fig. 8. Climatic changes in sequence-stratigraphy development of the CCPB, as inferred from inversion of the Middle Eocene warm climate, later cooling

culminated in the Terminal Eocene Event and continued during the Early Oligocene, upwardly tended to eustatic rise of sea-level and then its drastic lowering

due to glacio-eustatic regression in the Mid-Oligocene Event. Climatic changes are evidenced by extinction of semitropical fauna, foraminiferal abundance

and bloom traces of nannofossils, inprints of diatoms (Menilite facies) and brackish dino¯agellates.



ores (Marschalko, 1966). The erosional truncation of upper

fan zones becomes less obvious basinward, where it is

inferred as correlative conformity between mud-rich and

sand-rich fans. During the Late Oligocene, the CCPB was

®lled up by the progradational wedge of submarine fans,

which is developed from the sandy-weak turbidite system

of the Zuberec Fm. to the sand-rich turbidite system of the

Biely Potok Fm. The sand-rich deposition of the CCPB

lasted until Early Miocene, as indicated by nannofossils

like Helicosphaera scissura, H. kamptneri, H. cf. carteri,

H. cf. ampliaperta, Reticulofenestra cf. pseudoumbilica,

Triquetrorhabdulus cf. carinatus? (Nagymarosy, Hamrsmid,

& Svabenicka, 1996) and some foraminifera (Molnar et al.,

1992). However, the Early Miocene age is more apparent

from sequence stratigraphy correlations. The global eustasy,

which occurred under a distinctive regression during the

Late Oligocene±Early Miocene, led to gradual shallowing

and brackishing of Paratethyan basins. The Late Oligocene

regression in the CCPB is recorded by the Biely Potok Fm.,

while shallowing and decrease of salinity is indicated by

appearance of braarudospherids in nannoplankton associa-

tions (e.g. Blatna dolina) and brackish dino¯agellates in

phytoplankton (Hudackova, 1998). The regressive trend of

the Late Oligocene±Early Miocene deposition reached the

maximum lowstand on the base of the NN2 Biozone, when

the brackish fauna started to appear (Steininger, Senes,

Kleemann, & RoÈgl, 1985). Such a brackish event, indicated

by small gastropods and some gyrogonites (characeans?),

has been traced in sandstone lithosome sediments of the

Levoca Mts. According to this evidence, the deposition

of the Biely Potok Fm. probably lasted till the Early

Eggenburgian (Late Egerian sensu Berggren, Kent, Swisher,

& Aubry, 1995). It should terminate to the lowstand phase at

the beginning of the NN2 zone, which preceded the next

transgressive cycle TB 2.1 (sensu Haq, 1991), and occurred

at the base of the Presov Fm. (Kovac & Zlinska, 1998). In

fact, gastropod-bearing sandstones and overlying sandstone

lithosomes of the Biely Potok Fm., which are about 300 m

thick in the Levoca Mts., cannot be de®ned as ª¯yschº,

but rather as molasse sediments, deposited during a
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Fig. 9. Composite logs of system tracts in the CCPB interpreted in terms of sequence stratigraphy. Abbreviations: IDS Ð initial depositional surface, TS Ð

transgressive surface, TST Ð transgressive system tract, HST Ð highstand system tract, LST Ð lowstand system tract, LHST Ð late highstand sytem tract,

FSST Ð falling stage system tract, MFS Ð maximum ¯ooding surface, SB1 Ð Type 1 sequence boundary, CC Ð correlative conformity.



retrogressive stage of the basin evolution. Nevertheless, the

vitrinite re¯ectance and illite-smectite diagenesis data from

near-surface sediments of the Levoca Mts. indicate that up

to 2.5 km of this sequence is missing. Thus, the Late Oligo-

cene±Early Miocene cycle of the lowstand deposition in the

CCPB lasted for about 7 Ma (29±22.5 Ma), characterized

by a high accumulation rate of sand-rich deposits of

320±370 m/Ma. Coeval deposition in the Outer Flysch

Carpathians also occurred in the lowstand setting, as

indicated by the Krosno Facies, including the Zdanice-

Hustopece event (Krhovsky & Djurasinovic, 1993).

5. Basin subsidence and inversion tectonics

The CCPB began to subside because of active stretching

under SW±NE directed minimum principal compressional

stress s 3 (Marko, 1996; Sperner, 1996). The basin subsi-

dence was driven by structural tilting toward the Periklippen

Depression and oblique listric and anthitetic faulting toward

the Poprad depression. Asymmetric extension is indicated

by the rapid tectonic subsidence in northern depressions and

slow offshore subsidence along the southern CCPB margins.

The subsidence record of basinal depressions is characterized

by a steep hinge zone between 39 and 36 Ma (Fig. 12). The

tectonic subsidence was followed by a high accumulation

rate of up to 3000-m-thick Sambron Beds. The tectonic

subsidence mode of the CCPB is in accordance with basins

formed on active-plate margins, where basins are related to

gravitational collapse owing to basal erosion of the over-

riding plate (Wagreich, 1995). Therefore, the initial tectonic

subsidence of the CCPB could also have been induced by

subcrustal erosion of marginal parts of the ALCAPA plate

(sensu Csontos, 1995). The increase in tectonic subsidence

of the CCPB should have been followed by the thermal

phase, as indicated by the re¯ectance/depth curves in bore-

hole pro®les (Fig. 13), where the Ro values strongly increase

from 0.7 to 1.8% between 2 and 3 km (Masaryk et al.,
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1995). This perturbation in Ro values indicates the increase

in paleothermal gradient at about 508C km21, provided

which, a subcrustal heat for tilting tectonic subsidence of

the CCPB is required (see Kooi, 1991). After the tectonic

phase of subsidence, the CCPB underwent a post-rift relaxa-

tion, which resulted in the under®lled basin stage. The

accommodation space of the basin was enlarged by slowly

increasing subsidence and sea-level rise. The basin was

supplied by mud-rich deposits, which overlapped syn-rift

sediments of the Sambron Beds or bypassed basinal

space-added slopes.

The subsidence of the CCPB began to differentiate during

the Late Oligocene. The differentiation re¯ected the onset of

shortening along the northern basin margin of the Sambron

Zone. The deformation of the Sambron Zone indicates

antiformal stacking and backthrusting, observed as fault-

propagation anticlines, kink- and chevron-type folds and

imbricated duplexes (Fig. 14a and b). In response to the
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thrust loading, the retroarc foreland of the CCPB underwent

the additional subsidence and landward migration of

depocentres (Fig. 21). The Late Oligocene subsidence was

controlled mainly by ¯exural loading and high accumula-

tion rate of sand-rich deposits, which resulted in the

over®lled basin. It is possible that the ¯exural loading was

able to regenerate a higher heat ¯ow for Late Oligocene

sediments in the Levoca Mts. The load effect in the CCPB

brought the increase of total subsidence after 30 Ma

(Fig. 12). The Sambron Zone lacks the sedimentary record

for adequate loading after 30 Ma. On the contrary, its

concave-upward subsidence pattern shows a slow tendency

to uplift during this time. Thus, the distribution of the

vitrinite re¯ectance data within the CCPB is not entirely

consistent with stratigraphy and depth. For instance, re¯ec-

tance values of 0.7% Ro obtained from near-surface

sediments of Upper Oligocene formations in the Levoca

Mts. (Tichy Potok wells) are approximately the same as

those determined from Lower Oligocene sediments of the

Sambron Zone at a depth of 2000 m (Lipany wells). Accord-

ing to K±Ar dating of tuffs in the Levoca Mts., Upper

Oligocene sediments reached the maximal burial tempera-

ture of 120±1408C at 22.5 Ma (Uhlik, 1999). It implies that

Upper Oligocene sediments of the Levoca Mts. had to be

buried during the Early Miocene. During that time, the

deformed sediments of the Sambron Zone were uncon-

formably overlapped by the Eggenburgian sediments of

the Celovce Formation. There is a distinct thermal gap

between these formations, which resulted from the erosion

of the Sambron Zone before the deposition of the Celovce

Fm., which provides the lowest grade of the thermal altera-

tion. Vitrinite re¯ectance data from the Lower Oligocene

sediments (Masaryk et al., 1995) indicate that the Sambron

Zone lost a sedimentary sequence as much as 2 km thick.

This missing sequence of the Oligocene sediments had to be

eroded off during the Late Oligocene/Early Miocene. At the

same time, the subsidence and sedimentation in the central

part of the CCPB continued. The youngest sediments of the

Levoca Mts., that correspond to NP 25±NN1(?) Biozones,

yield vitrinite re¯ectance values adequate for 2.5 km of

burial depth (Kotulova, Biron, & Sotak, 1998). These

vitrinite re¯ectance values from near-surface locations are

equal to those occurring in the Presov-1 well at the depth of

2500 m, where coeval Upper Oligocene sediments of the

CCPB are conformably overlapped by Eggenburgian-

Karpatian sediments of the East Slovakian Basin. Similarly,

Upper Oligocene±Lower Miocene? sediments of the

Levoca Mts. indicate that they have been overlain by a 2±

3-km-thick missing sedimentary sequence (Kotulova,

1996). The estimated thickness of the unknown sequence

appears to be eroded off above the inverted normal faults

(Fig. 21), indicated as backthrusts in the southern part of

Levoca Mts. (Vozarova, 1995), Branisko Mts. and Vysoke

Tatry Mts. (Sperner, 1996).

6. Reservoir rocks and ¯uid/pressure regime

The CCPB has fair- to pure-quality reservoirs. Flysch

sandstones are mostly siliciclastic turbidites not having

suf®cient porosity for good reservoir properties. Their

measured porosity and permeability ranges between 0.3

and 6% and between 12 and 76 mm2 £ 103, respectively

(Ondra & Hanak, 1989; Rudinec, 1989). Their pore systems

are ®lled up by a depositional matrix and signi®cantly reduced

by mechanic compaction and carbonate, phyllosilicate and

silica cementation. As shown by the blue-resin technique

(Bebej, 1996), the total porosity of these quartzolithic sand-

stones was not enlarged by secondary effects, which include

only a dissolution of some volcanolithic and feldspar grains.

Exceptions exist in the Sambron Zone where ¯ysch sand-

stones contain a high amount of unstable components like

basalts, ultrama®cs and glass clasts. This type of arenites
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Fig. 14. (a) Upright symmetric chevron-type macrofold in the Sambron

Zone (for scale use the pylon on the right). (b) Fault-propagation macrofold

in the Sambron Zone. Folded sequence consists of serpentinite-rich

sediments, like Zebra-type turbidites.



also occurs in the matrix of intraformational breccias and

conglomerates, which form regional reservoir horizons with

hydrocarbon shows in the Sambron Zone found in all deep

boreholes (Fig. 13). These scarp sediments contain mostly

carbonate clasts and green-colored arenaceous matrix,

cemented by smectite (saponite) and mixed-layer chlorite/

smectite. Precipitation of these clays re¯ects high Mg and/or

Fe concentrations determined from ma®c detritic material

(Biron, Sotak, & Bebej, 1999). The presence of smectite and

corrensite appears to be important for the ¯uid pressure

control in intraformational bodies. These minerals occur

as oriented slicken®bre aggregates intergrowing the matrix

and ®lling pressure shadows and en-echelon veins (Fig. 6e).

Intraformational breccias occur in claystone formations

with a high degree of post-sedimentary alteration. Ordered

R3 mixed-layer illite/smectite yields the estimated tempera-

ture of about 1708C (Pollastro, 1993). However, a persis-

tence of highly expandable clay minerals in intraformational

breccias indicates considerably lower temperatures of

post-sedimentary alteration, which are below 1008C.

The slow-down of diagenetic processes is characteristic

of a rock environment with ¯uid overpressure (Jaboyedoff

& Jeanbourquin, 1995). This evidence allows us to interpret

that the diagenetic system of intraformational breccia

bodies, which are the best reservoir rocks in the CCPB

(Rudinec, 1992), was originally overpressured. It seems

that the ¯uid overpressuring of the Sambron Zone was not

only driven by overburden but by combination of over-

burden and tectonic stress. The Sambron Zone is considered

to be the zone of retreat accretion and backthrusting. Based

on analogy with overpressure pulses known from modern

accretionary prisms (e.g. Brown, Bekins, Clennell,

Dewhurst, & Westbrook, 1994; Maltman, Byrne, Karig, &

Lallemant, 1993; Moore et al., 1982), the evidence for over-

pressure is also acceptable for the Sambron Zone. Permeable

horizons, like the breccias in the Sambron Beds, served as a

¯uid channels during accretionary deformation (Valenta,

Cartwright, & Oliver, 1994). Apart from breccia horizons,

the structural permeability of the Sambron Zone has been

used for expulsion of overpressured hydrothermal and hydro-

carbon ¯uids. Extensional veins along meso-scale strike±

slip faults ®lled by bitumens and Marmarosh Diamonds

indicate that yet other ¯uid channels were formed by fault

zones, which is also in accordance with observations from

modern accretionary prisms (e.g. Knipe, 1993; Moore,

Orange, & Kulm, 1990).

The CCPB is currently a cold region with very low forma-

tion pressures (Rudinec & Magyar, 1996). The hydrostatic

pressure gradient varies from 9.86 to 10.36 kPa m21. These

subhydrostatic pressures probably resulted from uplift and

compressional tectonics in the Pieniny Klippen Belt area.

The geothermal gradient of the CCPB region ranges

between 24 and 278C. Recent pressure and temperature

data are substantially lower than paleopressures and paleo-

temperatures. Extremely high pressure values of 110±

150 MPa in the Sambron Zone, reaching lithostatic values,

and crystallization temperatures of 130±1508C have been

obtained from hydrocarbon-rich ¯uid inclusions trapped in

the quartz/calcite veins (Hurai, Siranova, Marko, & Sotak,

1995). This internal overpressuring of veins can be attributed

to the thermal degradation of higher hydrocarbons accom-

panied by liberation of large methane volumes. The over-

pressuring in the central part of the CCPB is also inferred

from occurrences of solid bitumens and exudatinite in Tichy

Potok wells in the Levoca Mts (see Parnell, 1994). Accord-

ing to Kotulova (1996), the mentioned protopetroleum

products here were generated by early expulsion from

source rocks, which contain terrestric and marine OM,

enriched in resinite particles, like macerals derived from

plant resins. Considering the mean vitrinite re¯ectance of

0.6% and illite/smectite diagenesis, indicated by R1 I/S with

30% of smectite layers (Biron, 1996), these sediments

reached the maximum temperature of about 1108C at a

burial depth of about 2.5±3 km (see Pollastro, 1993). Oil

and gas-condensates in described conditions can be gener-

ated from the resinite-rich terrestrial OM earlier than from

other OM types (Powell & Snowdon, 1983). Transformation

of the kerogen to liquid and gas hydrocarbons in the Levoca

Mts. led to overpressuring of near-source rock mainly

because of the accompanying volume expansion (see
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Osborne & Swarbrick, 1997). After a short outward

migration away from the source rock and higher pressure

conditions, hydrocarbon ¯uids were accumulated in discon-

tinuity sets of sedimentary rocks. The solidi®cation of these

hydrocarbons occurred either during continuous burial

diagenesis by polymerization or during uplift and cooling

of basin formations because of ¯uid pressure drop or gas

exsolution from liquid and semi-solid bitumens (Kotulova,

1996).

7. Organic geochemistry and kerogen maturation
zonality

Paleogene rocks and some pre-Tertiary rocks from well

cores reaching up to 3000 m have been characterized using

routine organic geochemical methods. Sample lithologies

comprise mostly shales, partly sandy shales and carbonates.

The total organic carbon (TOC) content of Paleogene

source rocks with disseminated organic matter in the Lipany

wells area is up to 2%. Source rocks with coaly organic

matter in LVH wells have TOC of up to 10%. Primary

geochemical features of the oil-bearing Lipany area based on

Rock-Eval pyrolysis are shown in Fig. 16. The kerogen is

predominantly terrestrial (Type III in Fig. 15). However, the

hydrocarbon generation potential in Lipany and mainly

Plavnica wells is exhausted to a considerable extent.

The kerogen maturation zonality, estimated by micro-

photometry, is shown in Fig. 17, maximum pyrolysis Tmax

temperature values and kinetic modelling of hydrocarbon

generation in Figs. 18±20. The highest maturation level

within Paleogene sediments was reached in the north-

western part of the Levoca Mts. in Plavnica 1, 2 and
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Sambron PU1 wells, where it is in the ®nal stage of the oil to

dry gas generation (Fig. 17). The present residual hydrocar-

bon potential is of about 0.19 kg HC per ton and represents

only a relict of the original hydrocarbon potential. This

maturation stage was reached in the geological past at

considerably greater depth. The organic matter in Lipany

wells in the northeastern part of the basin is less mature.

Maturity ranges from the early hydrocarbon to beginning of

gas production (Fig. 17). The total hydrocarbon potential is

about 0.3±0.8 kg HC per ton. It represents, like in the NW

part of the CCPB, a relict of the original hydrocarbon

potential. A portion of this potential represents small oil

accumulations discovered by Lipany wells. The area with

relatively less mature organic matter lies in the centre of the

Levoca Mts., in the LHV and Tichy Potok wells area. The

maturation stage here corresponds to the early oil production

stage with a total hydrocarbon potential of about 0.8±5.5 kg

HC per ton. The hydrocarbon potential in coaly sediments of

this area reaches values of tenths of kg HC per ton and it is

most comparable with the original potential. Maximum

values in LVH 6 well are 200 kg HC per ton.

Metamorphic discordance between Paleogene sediments

and underlying Mesozoic formations is indicated by

vitrinite re¯ectance in both NW and NE parts of the basin

(Fig. 20). Present depth and temperature conditions exclude

Mesozoic sediments from being potential active producing

source rocks. Geological reconstruction indicates that the

present maturation stage of Mesozoic sediments was

reached within the period of Middle to Late Cretaceous

(Fig. 18) and was not signi®cantly in¯uenced by sedimenta-

tion of the overlying Paleogene strata.

Paleogene sediments in different parts of the Levoca Mts.

are not equivalently mature (Fig. 19). The maximum hydro-

carbon production was reached in Late Oligocene. Since

this period these sediments have remained in the relict

maturation stage (Figs. 18 and 20), which was originally

reached at considerably greater depth. Case examples of

Plavnica and Sambron PU1 wells indicate depths 2000 m

deeper than present depths.

Based on mentioned results we present the following

katagenetic zonality for kerogen Type III:

² The top of the early hydrocarbon generation zone lies at

2600 to 21200 m altitude in the Lipany wells in the

northeastern part of the CCPB, at 0 to 1800 m altitude

in Plavnica and Sambron PU1 wells in the central and

northwestern parts of the CCPB and partly on the surface

in the northwestern portion of the basin.

² The top of the oil generation zone lies at 2800 to

21400 m altitude in the NE part of the CCPB, 2200 to

1800 m altitude in the central part of the basin and partly

on the surface in Plavnica 1, LVH 2 and 3 wells.

² The top of the condensate zone lies at 22400 to 3000 m

altitude in the NE part of the CCPB and 2400 to

21800 m altitude in Plavnica 2 well, central and NW

parts of the basin.
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² The top of the dry gas zone lies at 23000 to 3200 m

altitude in the NE part of the CCPB in the vicinity of

the Klippen Belt and at 1000 to 22200 m altitude in both

N and NW parts of the basin. The residual hydrocarbon

potential is practically completely exhausted.

8. Geotectonic setting and basin evolution

The CCPB was formed as a marginal sea of Peri-Tethyan

basins. It shows a fore-arc basin position developed in the

proximal zone of the Outer Carpathian accretionary prism.
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The CCPB began to subside probably due to the extensional

collapse and basal erosion (attrition) of the overriding plate

above the zone of subduction (see Moberly, Shepard, &

Coulbourn, 1982; Wagreich, 1995). Despite the regional

tectonic control, the basin evolution re¯ects an important

role of global sea-level changes (Bartholdy et al., 1999;

Sotak, 1998a; Sotak & Starek, 1999). The CCPB reveals a

polystage development: (1) initial faulting and alluvial fan

deposition in a halfgraben-type basin, (2) carbonate factory

in a shelf-margin basin, (3) glacio-eustatic regression and

semi-isolation in a restricted basin, (4) progressive faulting

and fault-controlled accumulation of radial fans in a tilted

basin, (5) highstand aggradation in a starved basin, (6) Mid-

Oligocene sea-level lowering and retroarc backstepping of

depocentres in a relic basin, and (7) wedging of sand-rich

fans and suprafans in an over-supplied basin (Fig. 21).

The CCPB lacks sediments of the younger depositional

cycle, which is indicated by burial temperature of Upper

Oligocene formations. This missing sequence was inferred

to have been formed by the Lower Miocene sediments.

Upper Oligocene fan systems of the CCPB show an

organization responsive to geodynamic setting of active

margin-fans, as indicated by elongated shape, development

of attached lobes and suprafan lobes (Shanmugam &

Moiola, 1988). The CCPB sedimentation ceased because

of subduction-related shortening and gradual uplift. The

youngest oceanic crust indications include detrital

serpentinites in the Upper Oligocene sediments of the

perisutural basin (Sotak & Bebej, 1996). The basin inver-

sion progressed from the north, where the ¯ysch sediments

of the Sambron Zone were folded and eroded already before

the Eggenburgian, as is indicated by unconformity below

the Celovce Fm. The related regional maximum principal

compressional stress s 1 in the CCPB had N±S and NE±SW

direction (Marko, 1996; Nemcok, 1993; Nemcok &

Nemcok, 1994; Sperner, 1996). It coincided with northward

and northeastward out-of-sequence thrusting of the Outer

Carpathian accretionary wedge above the southwestward

subducting slab. The Sambron Zone became the rear part

of the accretionary wedge, affected by detachment faulting,

antiformal stacking and backthrusting. The maximum

amount of the perpendicular shortening in the Sambron

Zone has been calculated as about 70% (Nemcok et al.,

1996). The change of compressive stress to NW-directed

s 1 re¯ects the oblique plate convergence characterized

by transpression and dextral wrenching (Bada, 1999;

Ratschbacher et al., 1993; Roca, Bessereau, Jawor, Kotarba,

& Roure, 1995). The northern side of the basin was bounded

and amputated by a ®rst-order transform fault related to

oblique-plate boundary (Pieniny Klippen Belt). It accom-

modated the extreme deformation resulting from horizontal

shortening, vertical lengthening and noncoaxial dextral

shearing (Ratschbacher et al., 1993). The boundary between

the Sambron Zone and the Pieniny Klippen Belt is supposed

to be a crustal-scale wrench fault juxtaposing units of

orginally distant provenances. As a consequence, the

CCPB lacks at least one-third of its Periklippen part (cf.

Marschalko, 1975). Later disintegration of the Central

Carpathian fore-arc basin led to the opening of wrench

furrow basins along the Pieniny Klippen Belt (Kovac et

al., 1998).

The geotectonic origin of the CCPB was closely related to

the Tertiary dynamics of the ALCAPA plate (sensu Csontos,

1995). The Tertiary collision in the Alps initiated the

eastward extrusion of the ALCAPA lithospheric fragments

(Ratschbacher, Merle, Davy, & Cobbold, 1991), which

orogenic front above the southwestward subducting slab

created a catchment area for the CCPB in the fore-arc

position. Progressive indentation of the ALCAPA plate

(Tari, Baldi, & Baldi-Beke, 1993) advancing above the

subducted slab led to form a highly asymmetric doubly

vergent accretionary wedge of the Outer Carpathian ¯ysch

prism. During the Early Miocene, the ALCAPA came

into continental collision with strong embayment of

the European foreland (Bada, 1999; Sperner, 1996),

which enabled its counter clockwise rotational movement

(Kovac & Tunyi, 1995; Marton & Marton, 1996). This

rotation was compensated by dextral shearing in the trans-

pressional zone of the Pieniny Klippen Belt (Ratschbacher

et al., 1993), and resulted in oroclinal bending of the

Carpathian arc.
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